大学数学建模论文范文(推荐9篇)(数学建模论文范文100篇)
来源:阿白律师网 时间:2024-09-30
大学数学建模论文范文 第1篇
浙江师范大学,一个好漂亮的校园哦!但我还未来得及去欣赏校园的每一个角落,却要毕业了。
回忆在学校的生活(大一到大三在学校里学习生活,大四一开始便参加工作了,而且现在已是第8个月工作了矣),总结一下自己的得与失吧:
综合成绩:
1、浙江省优秀毕业生;
2、大学三年综合素质总成绩排名专业第一名,德育总评优秀,智育总评优秀,体育总评优秀,能力总评优秀,毕业生专业实习成绩优秀;
3、2005-2006学年综合素质成绩排名专业第一名,获“校优秀学生奖学金一等奖”;
4、2004-2005学年综合素质成绩排名专业第一名,获“校优秀学生奖学金一等奖”;
5、2003-2004学年综合成绩素质排名专业第三名,获“校优秀学生奖学金二等奖”;
创业方案活动:
6、在2006年举办的“东方前城(前城车世)”杯金华市首届青年创业方案设计大赛和青年创业项目征集推介活动中获得“最佳方案奖”;
荣誉称号:
7、2003被评为“浙江师范大学军训先进个人”称号;
8、进入《2007届毕业生学子英才》专刊库;
9、2003-2004学年,获校“三好学生”证书;
10、2004-2005学年,获校“三好学生”证书; 全国大学生英语四、六级证书:
12、通过全国大学生英语等级考试四级;
13、通过全国大学生英语等级考试六级(444分);
职业、技能资格证书:
14、,获《高级无线电调试工》职业证书;
15、2004已通过浙江省计算机等级考试二级VB;
大学数学建模论文范文 第2篇
课程是高校教育教学活动的载体,是学生掌握理论基础知识和提高综合运用知识能力的重要渠道,学生创新能力的形成必定要落实在课程教学活动的全过程中。“数学建模”是一门理论与实践紧密结合的数学基础课程,课程的许多案例来源于实际生活,其学习过程让学生体验了数学与实际问题的紧密联系。数学建模课程从教学理念及教学方法上有别于传统的数学课程,它是将培养学生的创新实践能力作为主要任务,利用课程体系完成创新能力的培养。由于课程教学内容系统性差,建模方法涉及多个数学分支,课程结束后还存在着学生面对实际问题无从下手解决的现象。通过深入研究课程教学体系,将传授知识和实践指导有机结合,实施以数学建模课程教学为核心,以竞赛和创新实验为平台的新课程教学模式。
一、数学建模课程对培养创新人才的作用
(一)提高实践能力
数学建模课程案例主要来源于多领域中的实际问题,它不仅仅是单一的数学问题,具有数学与多学科交叉、融合等特点。课程要求学生掌握一般数学基础知识,同时要进一步学习如微分方程、概率统计、优化理论等数学知识。这就需要学生有自主学习“新知识”的能力,还要具备运用综合知识解决实际问题的能力。因此,数学建模课程对于大学生自学能力和综合运用知识能力的培养具有重要作用。
(二)提高创新能力
数学建模方法是解决现实问题的一种量化手段。数学建模和传统数学课程相比,是一种创新性活动。面对实际问题,根据数据和现象分析,用数学语言描述建模问题,再进行科学计算处理,最后反馈到现实中解释,这一过程没有固定的标准模式,可以采用不同方法和思路解决同样的问题,能锻炼学生的想象力、洞察力和创新能力。
(三)提高科学素质
面对复杂的实际问题,学生不仅要学会发现问题,还要将问题转化为数学模型,利用数学方法和计算软件提出方案用于解释实际问题。由于数学建模知识的宽泛性,需要学生分工合作完成建模过程,各成员的知识结构侧重点有所不同,彼此沟通、讨论有助于大学生相互交流与协作能力的培养,最终的成果以科学研究论文的形式体现,科学论文撰写过程提高了学生科学研究的系统性。
二、基于数学建模课程教学全方位推进创新能力培养的实践
(一)分解教学内容增强课程的适应性
根据学生的接受能力及数学建模的发展趋势,在保持课程理论体系完整性和知识方法系统性的基础上,教学内容分解为课堂讲授与课后实践两部分。课堂教师讲授数学建模的基础理论和基本方法,精讲经典数学模型及建模应用案例,启发学生数学建模思维,激发学生数学建模兴趣;课后学生自己动手完成课堂内容扩展、模型运算及模型改进等,教师答疑解惑。课堂教学注重数学建模知识的学习,课后教学重在知识的运用。随着实际问题的复杂化和多元化,基本的数学建模方法及计算能力满足不了实际需求。课程教学中还增加了图论、模糊数学等方法,计算机软件等初级知识。
(二)融入新的教学方法提高学生的参与度
1.课堂教学融入引导式和参与式教学方法。数学建模涉及的知识很多是学生学过的,对学生熟悉的方法,教师以引导学生回顾知识、增强应用意识为主,借助应用案例重点讲授问题解决过程中数学方法的应用,引导学生学习数学建模过程;对于学生不熟悉的方法,则要先系统讲授方法,再分析講解方法在案例中的应用,引导学生根据问题寻找方法。此外,为了增强学生学习的积极性和效果,组织1~2次专题研讨,要求学生参与教学过程,教师须做精心准备,选择合适教学内容、设计建模过程、引导学生讨论、纠正错误观点。
2.课后实践实施讨论式和合作式教学方法。在课后实践教学中,提倡学生组成学习小组,教师参与小组讨论共同解决建模问题。学生以主动者的角色积极参与讨论、独立完成建模工作,并进行小组建模报告,教师给予点评和纠正。对那些没有彻底解决的问题,鼓励学生继续讨论完善。通过学生讨论、教师点评、学生完善这一过程,极大地调动了学生参与讨论、团队合作的热情。同时,教师鼓励学生自己寻找感兴趣的问题,用数学建模去解决问题。
3.课程综合实践推进研究式教学方法。指导学生在参加数学建模竞赛、学习专业知识、做毕业设计及参与教师科研等工作中,学习深入研究建模解决实际问题的方法,通过多层次建模综合实践能提高分析问题、选择方法、实施建模、问题求解、编程实践、计算模拟的综合能力,进而提高创新能力。
(三)融合多种教学手段,提高课程的实效性
大学数学建模论文范文 第3篇
众所周知,21世纪是知识经济的时代。所谓知识经济,是以现代科学技术为核心,建立在知识和信息的生产、存储、使用和消费之上的经济;是以智力资源为第一生产力要素的经济;是以高科技产业为支柱产业的经济。知识创新和技术创新是知识经济的基本要求和内在动力,培养高素质、复合型的创新人才是时展的需要。创新型人才是指具有较强的创新精神、创新意识和创新能力,并能够将创造能力转化为创造性成果的高素质人才。而数学建模活动则旨在培养学生的创新意识和创新能力、应用意识和应用能力。[1]为此,国外在20世纪80年代就开始举办数学建模竞赛,我国也于1994年开始由中国工业与应用数学学会和教育部高教司联合举办一年一次的全国大学生数学建模竞赛,极大地推动了高校数学教学的改革。随着全国大学生建模竞赛进入二十个年头,参赛学校越来越多。到2011年,有来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国、伊朗的1251所院校、19490个队(其中本科组16008队、专科组3482队)、58000多名大学生报名参加本项竞赛。在组织和培训学生参赛过程中,积累了一些经验,但还存在许多问题,特别是数学建模教学的目标与短期利益要求不一致的问题,需要相关人员继续努力,推动数学建模教学,提高学生应用数学解决实际问题的能力和素质。
一、高职院校数学建模教学现状
2003年,湖北省数学建模竞赛组委会在襄樊职业技术学院召开全国大学生数学建模研讨会,各高职院校派教师参加了会议。会后,经过学院领导的批准,湖北职业技术学院(以下简称“我院”)选派了两个代表队参加全国数学建模竞赛,以后每年都自己组织选拔学生参加这项竞赛。开始的几年,数学建模教学实际上只停留在赛前培训上。由于硬件原因,培训过程仍然是上理论课多,学生实际动手的少,加之每年参赛队数的限制,使得数学建模教学变成只是为竞赛培训而进行,学生受益面很有限,在学生中的影响也很小。参加竞赛开始的几年,由于领导重视,指导教师的努力,同时我院在2005年投资建立了应用数学实验室,为数学建模提供了一定的硬件基础,使得数学建模教学能够实现培养学生动手能力的目标。再加上学生的勤奋,因此,在2005年前取得了四个全国二等奖和三个湖北省一等奖、一个湖北省二等奖的好成绩;但是随着我院工作重心的转移,数学课程教学时数的大幅压缩,招收学生的数学素质的逐步下降,加之数学建模竞赛实际上赛的是学生的应用数学的能力和素质,仅靠短期的培训往往收效不大,所以近几年竞赛成绩都不太理想,和同类院校相差较大,也直接影响到数学建模教学的发展。
为了改变这种不利的局面,根据专业计划的调整进行数学教学改革,进一步推动数学建模教学,在相关专业开设数学建模与数学实验选修课程,实现真正意义上的数学建模教学。为了进一步扩大影响和学生的受益面,鼓励学生成立数学建模协会,我院每年举办一次应用数学知识校内竞赛,使得数学建模教学大大地前进了一步。
二、高职院校数学建模教学中存在的问题
随着高职院校参加各种专业技能竞赛的增加,数学建模竞赛在高职学生中的影响渐渐下降,学生参加数学建模竞赛的积极性也逐渐下降。同时,数学建模教学存在的问题仍然很多。首先是竞赛成绩与数学建模教学目标之间存在的矛盾。如前所述,数学建模竞赛赛的是学生应用数学的综合素质,而且举办数学建模竞赛的初衷是推动数学教学改革,只有把数学建模的思想方法融入到高职数学课程的整个教学中,才能实现数学建模教学的目标。随着参加数学建模学生的增加,各高职院校在数学建模实践设备的投资严重不足,设备老化没有更新,不能满足竞赛队员的培训,在很大程度上制约了数学建模教学的发展。
其次,对数学建模缺乏应有的宣传,直接影响了学生参与热情,因而降低了应有的受益面。相对其它活动,数学建模的相关信息在各高职院校的新闻报道中很少听到、见到,也没有场地用来开展数学建模协会的活动,即使是教师进行数学建模的讲座场地,也要经过多方审批。多年来,高职院校经常将获奖学生的奖励包括奖金直接发给学生,没有举行颁奖仪式,重视程度也大大不及学生的专业竞赛和文体活动,这说明这方面的工作确实有较大的问题。
第三,学校的政策层面也对教师进行数学建模教学鼓励不够,甚至有些政策直接减少了教师在数学建模教学上的投入。追求科研项目、科研论文,使得教师没有足够的精力投入到数学建模教学中,有的纯粹是应付差事、对付数学建模竞赛,根本达不到通过数学建模教学提高学生应用素质的效果。急功近利的短视行为,很大程度上影响着数学建模竞赛和数学建模教育的健康发展。把目标仅仅放在获奖上,而忽略了数学建模教学和学习的规律,不在开发思路与培养能力上下工夫,只在注重历年建模题型、所用工具的训练上做文章,到真正遇到实际问题或者没见过的类型时,就会一筹莫展。制约数学建模教学的根本问题还在于高等数学基础课程开设不够,甚至很多专业根本就没有开设,即使开设高等数学的专业也只开设了一个学期的微积分,只靠一个学期的高等数学课和一个多月数学建模培训,想要提高学生的应用数学素质实非易事。
三、推动数学建模教学,培养学生应用数学素质的措施
为了数学建模教学健康发展,提高学生应用数学素质,一方面需要好的政策和领导的重视,更重要的是数学教师自己的努力。因此,可以采取以下措施来推动数学建模教学,培养高职学生的应用数学素质。
首先,根据制约数学建模教学的根本问题,鼓励和要求从事数学建模教学的教师利用高等数学课程的教学,改造学生的数学知识结构,培养学生的数学思维。由于高职学生普遍缺少足够的数学建模能力和相应的数学建模教育,导致他们难以体验到数学应用性的特点,因而数学学习兴趣不高。数学在实际生活中的运用,往往需要经过数学建模的过程。数学建模能力不足,学生难以体验数学的运用,从而感觉不到数学的应用性,导致学生数学学习兴趣不高。因此在高等数学的教学内容中增加与生活实际和专业相关的实际问题,鼓励和要求从事数学课程教学的教师把数学建模的思想方法融入到整个教学活动中,使学生能更好地进行数学建模的学习和实践,进而提高分析问题、建立数学建模、求解模型、解决实际问题的能力。[2]
其次,可以在高等数学的教学中,开展数学建模周活动,拿出一到二周时间进行数学建模的教学,主要讲述数学建模的一般原理和建模方法,布置与生活实际和专业相关的问题,让学生用数学建模的方法去解决,并写出论文报告,作为学生的高等数学学业成绩的一部分。
第三,继续开设数学实验课程,让学生体会到数学也可以这样学,数学也可以解决身边的实际问题,体会到数学的应用价值,同时结合计算机的操作以提高学生学习数学的积极性。
大学数学建模论文范文 第4篇
关键词:AHP法;研究生;奖学金
一、奖学金评定应遵循的原则
研究生奖学金评选要遵循以下几个原则。第一,激励导向。研究生奖学金旨在充分调动研究生学习和科研积极性,促使研究生全面发展。第二,建立公开、公平、公正的奖学金评定平台。奖学金的评定是研究生关注、影响面很大的工作。处理得好,可以达到激励和教育的目的,也可达到资助学生的目的,处理不好,则会挫伤学生的积极性,甚至激起矛盾。所谓公开,就是指标、名额、奖金的数目都要公开,让学生心里有数;所谓公平、公正,就是评定的方法和过程要保证公开、公平,评定的结果要让学生信服。第三,民主、平等、双向交流。研究生不仅独立意识强,而且各专业、各年级的情况也不相同。奖学金评定方案制定不仅要考虑本校本学院实际情况,更要考虑到来自不同专业、不同年级的研究生的建议,注重学生的思想动态,解决评奖中出现的各种特殊情况。
二、评价模型的建立
在研究生奖学金评定中,评价指标体系的建立至关重要。既要反应问题的主要矛盾,还要兼顾次要矛盾,应对每一位研究生是公平和可比的,并且要便于获取和量化。结合交通与物流学院研究生在太原科技大学发展的实际情况,依据研究生奖学金评定的基本原则,研究生奖学金评价指标体系主要从科研成绩、课程学习成绩和德育综合成绩三方面中选择具有代表性的指标构成评价指标体系如图1。
三、AHP法确定
1.构造判断矩阵。建立层次结构模型后,就可以逐层逐项对各元素进行两两比较,建立其判断矩阵。判断矩阵形式如公式(1):
B=b■ … b■ ?噎b■ … b■?摇 (1)
对于单一准则来说,两个指标的比较,可分出优劣。其中系数bij的取值如表1。
同理,当Pi劣于Pj时,则bij可相应取上述的倒数(2、4、6、8的优劣是介于1、3、5、7的之间,可根据具体情况取相应的值)。
上述所建立的判断矩阵,使得判断思维数学化,简化了问题的分析。但是为了保证层次分析法分析得到结论的合理性,还需要对构造的判断矩阵进行一致性检验。在层次分析法中引入CI=λ■-n/n-1和平均随机一致性指标RI(其取值如表2)来查决策者判断思维的一致性。当n
2.计算权重。本文研究生奖学金评定工作中,选取不同专业研究生导师、研究生任课教师及不同年级、不同专业的研究生打分,分值按10分制来打,依据表3填写。
统计调查问表的结果,得到判断矩阵如表4所示,运用方根法计算得其权重如表4所示,同时计算求得
λ■=,CI=,CR=CI/RI=
故判断矩阵满足一致性要求,计算合理。
从表4可知,研究生二年级奖学金评定中科研成绩、课程学习成绩和德育综合成绩所占比重分别为、、。
四、成绩考评方法
1.科研成绩。科研成绩分为论文、专利、科研获奖、竞赛获奖、主持科研项目五项。科研评分计算公式:A=∑(Di×K)
其中:A为科研总得分;Di为i类别项对应分值,i为各类别项;系数K为1/n,n为排名顺序。(1)加分。论文按级别划分为SCI、CSSCI【EI(JA)】、ISTP【核心期刊、境外国际会议和EI(CA)】和一般论文四个等级,论文分值分别取为50、30、20、10。.(2)专利加分:专利分为专利授权、专利公示和专利受理三个等级,打分分值为30、20、10。(3)科研获奖加分:科研获奖分为国家奖、省部级奖、市级获奖、校级获奖四个等级,打分分值分别为300、150、100、50。(4)竞赛获奖加分:竞赛获奖分为三个等级,又根据不同的获奖等级打分分值如表5所示(5)主持科研项目:主持科研项目分为国家级项目、省部级项目和校级项目,打分分值分别为10、5、3。
2.课程学习成绩。学习成绩以个人培养计划中已完成的全部课程成绩计算,学习成绩实际分数计算如下:
其中i为所修课程。所修课程成绩若是以等级体现,需换算成分数,具体为:优=90;良=80;中=70;及格=60。
3.德育综合评分。德育综合包括社会活动和学生工作。德育评分公式,见下面公式(图2)。
其中:ci为社会活动加分、n为参加的活动数。(1)社会活动:社会活动加分如表6所示。(2)学生工作:学生工作加分如表7所示,学生工作不重复加分,有多项加分者,取最高加分。
五、综合评分
根据科研成绩、课程学习成绩和德育综合成绩三方面的得分,再乘以相对的权重系数,求和得综合评比成绩,计算公式见图2。
综合总分=*科研成绩+*课程学习成绩+*德育综合成绩
根据计算分值进行排名,按照排名次序进行奖学金的评定。
六、结论
该方法可操作性强,得到了研究生、研究生导师及相关管理人员的普遍认可,并于2014年的高年级研究生奖学金评定工作中顺利实施,也将应用于今后的奖学金评定。
参考文献:
大学数学建模论文范文 第5篇
关键词 数学建模 独立学院 课程改革 实践能力
中图分类号:G424 文献标识码:A DOI:
Independent College Mathematical Modeling Education Curriculum Reform
――Take College of Arts and Sciences, Yunnan Normal University as an example
LI_uijuan[1], YANG Bin[2]
( [1]College of Arts and Sciences, Yunnan Normal University, Kunming, Yunnan 650222;
[2]Yunnan Institute of Electronics Industry, Kunming, Yunnan 650031)
Abstract This article from the reality of Yunnan Normal University of Arts, discusses the characteristics of Mathematical Modeling Course and the creation of the significance of this course, and then analyzes the independent Institute of Mathematical Modeling Courses problems proposed curriculum reform and solve mathematical modeling ideas. By selecting the appropriate course materials and auxiliary teaching materials, teaching and the establishment of mathematical modeling contest guide the team to achieve classroom case discussions and presentations combine teaching mode, associated with the creation of mathematical modeling curriculum support programs, such as probability theory, mathematical analysis , operations research, graph theory and other courses, assessment methods diversified, respectively, classroom attendance, classroom discussion to answer the performance aspects of modeling large peacetime operations and final quality modeling work, modeling reply comprehensive assessment, in addition to organize students to participate actively in the network challenge and the National mathematical Contest in Modeling and other students, with remarkable results.
Key words mathematical modeling; independent college; curriculum reform; practical ability
数学建模课程是20世纪80年代初在我国理工科大学开设的一门重要的数学课程。由于数学建模过程几乎模拟了科学研究的全过程,因而对于培养大学生的科研能力与创新意识和应用数学能力具有特殊的作用。而数学建模的多媒体教学,作为一种现代化的教学手段,具有形象直观、信息量大、交互性强等优点,对于发挥学生的主体作用、促进学生主动学习和培养学生创新能力也非常有益。这些能力也正是我们大学数学素质教育所要努力追求的。
目前国内关于数学建模课程改革的研究论文虽然比较多,也有一定的成果,当时均处于探索阶段,并且从目前数学建模课程教学改革的相关文献可以看到,大部分这方面的研究都集中体现普通高校和研究型高校或者数学建模课程的改革方案和与能力培养方面的关系,然而,尽管不少普通大学和研究型大学都在大胆尝试建模课程体系改革,但针对独立学院实际的数学建模教学改革基本空白,对数学建模课程的具体化改革对象和成果展现等方面的研究更是少见。
云南师范大学文理学院建模课程开展时间较短,从内容到体系均有待完善,所以本文就云南师范大学文理学院的实际探讨数学建模课程的改革及其成效,从而达到促进建模的教学工作,提高教学质量,同时提高自身的素质水平。
1 在独立学院开设数学建模课程的意义
云南师范大学文理学院自办学以来,针对学生的缺点和不足,以新的视角,欣赏学生的特点,梳理学生的优势,客观评价学生,掌握学生的优势、优项,树立教学信心,以积极的态度开展教学工作。培养学生处理相关信息和大量数据的能力,在数学建模过程中,我们引导学生针对所研究问题进行收集、加工,处理和应用信息的能力。学会提炼有用信息,并恰当地运用信息,并学习使用计算机和相应的数学软件。
在建模过程中我们要求学生充分发挥想象力和动手能力,采用类比的方法把表面上完全不同的实际问题,用相似的数学模型去描述解决他们,逐步达到触类旁通的效果。
另外,因为数学建模课程主要涉及的都是现实生活中的实际问题,通过数学建模课程的学习和数学建模竞赛的参与,可以极好地锻炼学生的论文写作能力和创新能力,同时提升学生的参与意识,为以后的学习和工作打下良好的基础。所以在独立学院开设数学建模课程具有重要的意义。
2 云南师范大学文理学院数学建模课程的特点和存在的问题
云南师范大学文理学院数学建模课程的特点
(1)先修课程和应用课程较多。数学建模课程需要众多的先修基础数学课程和数学软件课程,如数学分析、运筹学、微分方程、概率论与数理统计、图论、计算方法、计算数学、解析几何,MATLAB,Mathematics,lingo等,我院信息工程学院在开设数学建模课程的前期或者同时开设上述相关课程,因为需要具备扎实的专业功底,才可能较好地学习数学建模课程。
(2)教学方式灵活多变。各大高校数学建模课程是基本是案例式教学,每个章节以例子来说明,如商人过河问题,交通流问题,减肥问题,旅游地的选择问题等等,均是和实际联系较为紧密的身边的问题,激发学生的学习兴趣。但是也有一些常见的建模方法可以类比推广,如层次分析法,灰色关联度分析法,时间序列法,排队论等,我们都是有针对性地选取教学内容以适应学生现有的知识结构和接受能力。教学方法上我们采用讲授法、探讨法、历年真题论文案例法(包括学生平时作业点评)等。
(3)教学设备手段先进。建模课程需要处理大量的数据,我院配备了先进的投影多媒体教室,并且开设了与建模相关的Matlab,Mathematica等数学软件。
(4)实用性强。数学建模课程的案例基本都来自实际问题,如人口、天气、干旱等的预测模型,优化模型,决策模型,控制模型等。这些模型的引入,让学生更加深刻地领会数学建模课程的实用性。
(5)课程较难学。数学建模课程涉及的领域广,知识面大。通的(交通流问题),医疗领域(看病排队问题)等,采用的各领域的知识较多,很多时候都是现学现用,需要很高的领会能力和接受能力,这对学生和教师要求都比较高。
云南师范大学文理学院数学建模课程存在的问题
大学数学建模论文范文 第6篇
关键词:数学建模 数学实验 课程改革
1、引言
进入21世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对解决实际问题的要求越来越精确,这使得数学已经成为一种能够普遍实施的技术,正如伟大的哲学家与数学家笛卡尔所说:“一切问题都可以化成数学问题”,进而,培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步。二十世纪70年代末至80年代初,英国剑桥大学为研究生开设了“数学建模(Pronblem Solving)”课程,牛津大学创设了与工业界的合作研究活动,欧洲和美国也开始将“数学建模”列入研究生和本科生的教学计划中。1985年美国70所大学联合举办了第一届数学建模竞赛,这一活动迅速引起美国以及国际大学生的广泛兴趣。在此期间,我国数学教育界的一些学者了解到西方数学教育的这一重要动向,于1992年成功举办第一届“全国大学生数学建模竞赛”,并逐步将“数学建模”课程引入我国大学本科教学计划。我校于2009年将“数学建模”课程设置为理工科必修课,笔者经过多年数学建模教学和数学建模竞赛指导,总结并探索得出数学建模的课程教学不同于传统的数学教学,传统的数学教学模式是以教师为中心、以课堂讲授为主,而数学建模教学则是突出以学生为中心、以实验室为基础、以问题为主线、以培养能力为目标。
2、数学建模课程的教学特点
数学建模是一门实践性很强的课程,与其它数学类课程的相比,最主要的区别是不能再沿用传统数学教学“课堂讲解—笔记—作业—考试”的教学模式。数学建模的教学形式灵活,在教学过程中强调尊重学生,尽可能把学习的主动权交给学生。课堂上,教师提出事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极展开讨论和辩论,充分发挥学生的主动性、积极性、创造性,教师从旁质疑指导,采取小组讨论,教学互动,学生上讲台做演讲等手段,提高学生的兴趣,调动学生参与的积极性、主动性和创造性,充分发挥学生的主体作用,从而锻炼学生解决问题的综合能力。当然,教师讲课在教学过程中还是占有很大部分比重,教师主要担当引路者的角色,把讲的机会让给学生,把做的过程放给学生,充分体现以学生“自主、探究、合作”为特征的教学方式。教学过程的重点是创造一个诱导学生的学习欲望、培养他们的自学能力,增强他们的应用意识和创新能力,提高他们的数学素质,强调的是获取新知识的能力,从而改变了传统的以教师为中心的课堂教学结构,由以教师为中心的教学结构转变为“以教师为主导—以学生为主体相结合”的教学结构。
“数学建模”课程的练习和考核方式也明显有别于传统数学课程。我们认为,“数学建模”适用多元化的考核方式,不宜简单采用闭卷考试,有标准解答的考试不符合“数学建模”问题的特点。所以,课堂多采用分组讨论,案例分析,上机计算和模拟,最后以论文形式提交作业;考试大多数采用组合考核,即平时练习、阶段论文、期末考试三部分综合评定成绩。学校一般不安排期末考试,而是通过模拟竞赛的论文来评定成绩。
3、数学建模与数学实验
数学实验是计算机技术和数学软件引入教学后出现的新生事物,是数学教学体系、内容和方法改革的一项创造性的尝试。“数学实验”是以计算机为工具,配以各种数学计算软件(如Matlab,Lindo\Lingo,Mathmatical,SAS,Maple,C,Excel等等)作为实验环境,用以加工处理各种数学资料信息,得到计算结论。而数学建模是在简化和假设的基础上,选择适当的数学工具来可挂描述各种量之间的关系,用表格、图形、公式等来确定数学结构。然而,建立模型的目的是为了解释自然现象,寻找规律,以便指导人们认识世界和改造世界,建立模型并不是目的。所以,模型建立后,要对模型进行求解、分析和检验,即用计算机技术和软件包求解数学模型,得到数量结果,并按照一定的数学规律,利用计算机程序语言来模拟实际运行的状态,并依据大量的模拟结果对系统或过程进行必要的定量分析,得到一些定量结果,这通常是解决实际问题的有效手段。
数学建模课的性质决定了它需要做数学实验,一方面,做数学实验可以在数学建模教学过程中加强学生“用数学”的意识,培养学生应用数学知识解决实际问题的能力;另一方面,数学实验可以将数学教学与计算机应用结合起来,培养学生进行数值计算与数据处理的能力。所以绝大部分学校在“数学建模”教学中结合了数学实验。数学实验与物理实验、化学实验一样具有演示作用,更把课堂教学与实际操作结合起来,给学生实践机会,它能将某些抽象的思维过程具体化、形象化,它是对人类思维过程的一种模拟、验证和拓广。因此,数学建模与数学实验的结合是很有必要的。
数学实验课的开设首先要选择合适的数学软件。如Mathematical、Matlab、Lingo\Lindo等,这些软件都是功能强、效率高,便于进行数学计算的交互软件包。它们对于一般的数值计算、矩阵运算、方程求解、高等数学建模、优化设计等都能方便地实施,在这些软件的操作环境下所解问题的语言表述形式和其数学表达形式相同,不须按传统的方法编程。例如在经管类高等数学的教学中,线性规划问题很多,而规划问题的求解需花去大量的时间计算,如果借助Lingo\Lindo软件,则能编制简单的程序,迅速解决计算问题。我们可以布置练习题让学生熟悉软件包,培养学生利用软件包求解模型的能力,并培养学生软件编程的能力。通过这些软件的实验和学习,同学们的实践动手能力得到了极大提高,一方面巩固了数学理论知识,另一方面又掌握了使用数学工具的本领。另外,在数学实验过程中,注意精心安排学生的实验,保证学生上机的时间,确实能让学生自己动手操作。尽量从实际问题引入要讲述的数学实验内容,也可以安排建模中常用的方法,如作图的方法(mathematical),曲线拟合的技巧(matlab),优化工具箱的使用(matlab),整数规划的求解(Lingo)等作为实验的内容。最后要求学生以2—3人为一个小组,在教师的指导下,写出实验报告,实验报告包括问题提出、实验目的、实验内容及要求、实验过程及结果、结果分析、思考与练习,这相当于完成一个实际问题的数学建模论文。
参考文献:
[1] 周义仓,赫孝良,数学建模实验[M],西安,西安交通大学出版社,2007
大学数学建模论文范文 第7篇
摘要:概率统计是一门具有很强应用性以及理论性的学科,其在科学与工程中占据着极为重要的地位。在科学技术以及知识更新日新月异的今天,为了更好满足时代需求,传统的概率统计教学思路应尽快进行改革,从增强学生竞争意识,培养学生应用以及创新能力出发,将数学建模思想以及先进科学技术融入到课堂教学中,提高学生数学素养。本文主要研究了教学内容实例的侧重、在教学方法中融入数学建模思想以及具体案例分析三个方面,本文的研究成果为优化概率统计教学,提高教学效率提供良好借鉴。
关键词:概率统计;数学建模;教学
数学建模主要是借助调查、数据收集、假设提出,简化抽象等一系列流程构建的反映实际问题数量关系的学科,将数学建模思想融入到概率统计教学中,不仅能够帮助学生更好地理解与掌握理论知识,同时对于提高学生运用数学思想解决实际问题的能力大有裨益。可以说,概率统计教学与数学建模思想的融入具有重要的理论以及现实意义。
1.教学内容实例的侧重
在大学数学教育体系中最为重要的一个目标就是培养学生建模、解模的能力,但是在传统概率统计教学中,教师大多注重学生的计算能力训练以及数学公式推导,而常常忽视利用已学知识进行实际问题的解决,使得大多数学生的应用能力无法得到提高。所以,为了能够在教学中提高学生应用概率与统计的实际能力,教师应在教学内容设计中吸收与融入与实际问题息息相关的题目,使学生在课堂中不仅能够轻松学习概率知识,增加学习主动性,同时能够尝试到数学建模的乐趣,提高自身数学素养。例如,在古典型概率问题的教学中,为了加深学生对于该部分知识的理解,教师可以引入彩票概率的实际问题,通过引导学生分析各等奖的中奖概率,使学生获得极高的建模、解模能力。
2.在教学方法中融入数学建模思想
在概率统计教学中,教师还需要在教学方法中融入数学建模思想。首先,采取启发式教学方法。在课堂教学中,教师应引导学生利用已学知识开展认识活动,在问题发现、分析、解决的一系列锻炼中获得概率统计知识的自觉领悟。其次,采取讲授与讨论相结合的教学方法。在课堂中,讲授是最为基本的教学方式,不过单一的讲授很可能导致课堂的枯燥,所以课堂中还需要适当穿插一些讨论,使学生在活跃的氛围中激活思维,延伸知识面。再次,采取案例分析的教学方法。案例分析是在概率统计教学中融入数学建模思想的一种有效方法。在教学中应用的案例应进行精选,其不仅需要具有典型性,同时还需要具备一定的新颖性以及针对性,通过缩短实际应用与数学方法间的距离,使学生学习数学的兴趣被大大激发。最后,采取现代教育技术的教学方法。在概率统计的问题中常常需要较大的数据处理运算量,所以为了简化问题,使学生掌握一定的统计软件具有重要意义。通过结合具体的概率统计案例,在学生面前演示统计软件中的基本功能,为提高学生掌握统计方法以及实际操作能力奠定坚实基础。知识的获取并不是单纯的认识过程,其更应偏向于创造,在不断强调知识发现的过程中帮助学生认识科学本质、掌握学习方法。
3.在概率统计教学中融入数学建模思想的案例分析
一个完整的数学思维必须经过问题数学化以及数学化问题求解两个方面,只有让学生体验以及掌握到一般的数学思维方法,才能使其真正拥有利用数学知识解决实际问题的能力。而具体分析在概率统计教学中融入数学建模思想的案例,能够为引导学生发现生活中的数学,开拓学生眼界奠定坚实基础。很多概率的实际问题中均存在着随机现象,其可以视作许多独立因素影响的综合结果,近似服从于正态分布。例如,某高校拥有5000名学生,由于每天晚上打开水的人较多,所以开水房经常出现排长队的现象,试问应增加多少个水龙头才能解决该种现象?对于该问题的解决,教师首先应组织学生对开水房现有的水龙头个数进行统计,然后调查每一个学生在晚上需要有多长时间才能占用一个水龙头,最后引导学生分析每一个学生使用水龙头这一情况是否是相互独立的,通过联想中心极限定理以及考虑每个人具有占用水龙头以及不占用水龙头两种情况,得到每人占用水龙头的概率为。所以,每名学生是否占用水龙头能够被视作一次独立试验,其能够看作是一个n=5000的伯努利试验,假设占用水龙头的学生个数为X,那么其满足X~B(5000,),通过借助中心极限定,使得该问题被快速解决。
4.总结
在概率统计教学中,教师应强调理论与实际问题的联系,通过加强概率统计教学中数学建模思想的融入,使得学生的理论知识以及实际应用能力得到快速提高,为培养适合现代社会发展的综合型人才奠定坚实基础。
大学数学建模论文范文 第8篇
一 引言
概率论与数理统计是定量研究随机现象规律性的数学学科。随着科学技术的发展,概率论与数理统计已广泛引用于农业院校各专业的科学研究中。目前中国的农业院校都开设了概率论与数理统计,虽然课程概念比较抽象,计算繁杂,学起来较困难,但这是应用性最强的大学数学课程之一。不过近年来,伴随着高校课程改革,高等农林院校本科生教学计划中概率论与数理统计课程的教学学时不断减少,所以必须对此课程的教学方式和方法进行改革。
二 农业院校概率论与数理统计教学中存在的问题
1.中学与大学数学教育内容的脱节
中学课改后的毕业生开始进入大学,课程改革中对数学课程的知识范围和要求改动了很多,学生们已经学习过部分概率论的知识,但中学时学习概率的思维方式与大学数学不同,很多学生依旧用中学的学习方式学习概率论与数理统计,造成了他们学习上产生挫败感。
2.教师的教育观念缺乏与时俱进
大部分大学数学教师并没有意识到中学课程改革对这门课程和学生们的影响,依旧按照传统教学方式讲授,注重定理、推论、证明、计算,而新一代的大学生很难快速适应新的学习方式,所以增加了学生的学习难度。
3.教学内容缺乏应用性
概率论和数理统计的教学过于强调基本理论,缺乏对农业科学的交叉性应用研究。农科专业的学生普遍感觉学数学对将来的生活工作没有用处,所以导致学生缺乏学习的动力和兴趣,只是为了通过考试而学习。
4.考核方式过于死板
多年来,概率论和数理统计的考核方式始终一成不变,偏重于期末的闭卷考试,试卷主要考查计算和一些固定模式的应用题型,导致学生死记硬背、应付考试,不利于激发学生的创新兴趣。
三 建模思想在概率论和数理统计课程上的应用
针对以上问题,建议改革教学方式,通过引入数学建模思想激发学生的创新思维。
1.改变教学内容,增加应用型教学的引入
首先,提倡教师了解中学课改中影响概率论与数理统计的内容,充分利用学生已学过的概率论知识,避免重复教学,但要强调中学数学与大学数学不同的思考方式。在教学内容中吸收和融入与实际农业科学研究问题有关的应用性题目。历年全国大学生数学建模竞赛题目中不乏农科专业相关的题目,如“作物生长的施肥效果问题”(1992年a题)、“dna序列的分类问题”(2000年a题)、“葡萄酒的评价”(2012年a题)等。这些题目都与现实农业生产生活密切相关,在解决这些问题过程中能很好地锻炼学生自主地、能动地认识、理解问题的能力。
但是,如果直接把数学建模的题引入日常教学中,将面临下列问题:(1)数学建模竞赛的题目一般是涉及面很广,需要很多专业知识和良好的数学功底,而农科院校的学生的数学基础薄弱,在没经过培训的情况下解决竞赛题目困难较大;(2)要较好地解决建模题目需要大量的时间,这在课时有限的概率论与统计课程中不可能实现。
上述两个问题的解决思路:(1)如果直接运用竞赛原题,可以把重点放在(1)(2)两个比较简单的问题上,删除题目中与这两个问题没有关系的条件,或简化题目背景以适应课堂教学;(2)引入一些数学建模集训小题目,这些题目类似于课后习题,但实用性更强,甚至可以留作课后作业,引导学生分组讨论,学生共同完成。
2.改变教学方法,引入相关教学统计软件
教学方法方面,重心不能一味地放在定理、证明、计算上,应抛弃“满堂灌”的教学方法,采用启发、归纳的教学模式,通过建模思想的引入,使学生由浅入深、由直观到抽象地认识概率论和数理统计在实践中的应用,真正掌握数学概念和方法,并从中获得学习上的乐趣。
数学实验课在农业院校中开展的相对较少,大多以选修课的形式出现,笔者建议在概率论与数理统计课程中安排1~2次实验课,讲授统计软件的应用。随着近代计算机技术的迅速发展,软件技术日益成熟,概率论与数理统计中很多计算问题都可以借助于软件操作。农科高校的学生普遍计算能力不强,尤其是建模例子中的数据样本量比较大,计算过程复杂,学生手算起来比较困难。现有的统计软件,如sas、spss等世界通用的软件,可以解决较大数据量的概率与统计方面的题目,如数据处理、数据拟合、参数估计、假设检验、方差分析、回归分析等问题,而且一般的菜单操作就可以解决这类问题。学生学习一些简单的软件应用,可以增强他们的应用意识和动手解决实际问题的能力,反过来促使学生主动学好概率论与数理统计的理论知识。
3.改变学习观念,提高学生的学习兴趣
建模思路的引入,能有效改变大学生的“数学无用论”。作为教师,我们应根据课程的主要知识点,与相关专业教师加强交流合作,搜集整理大量的农科专业问题,并用建模的方法进行解决。当然,课程的教学不一定都需要完整地解决一类问题,只要题目背景来自农科专业或采用农科数据,就能在很大程度上调动学生的学习积极性,让他们知道将来的学习和生活中确实能用到概率论与数理统计的相关知识。
4.改变考核方式和方法
概率论和数理统计是一门实用性较强的学科,特别是数理统计方面的题目,若采用传统的阅卷考核方式考查,只会导致学生用死记硬背、题海战术等方法应付考试,导致学生被动学习,缺乏学习的兴趣。
针对这种现象,笔者认为应让学生在实际中学习,并将所学归还于实际。因此老师平时布置作业时应布置一些实践题型,让学生自己学会去思考。关于考核形式的改革,为了达到“以教为导,以学为主,自主解决”的教学目的,在期末检测时,应采用期末考试(50分)+论文(30分)+平时成绩(20分)的考核方法,其中课程论文要求学生自己找问题,建立模型,利用概率论与数理统计知识解决问题。这样既考查了学生对理论的掌握程度,又能将理论应用于实际中,使得学生在学习过程中更加重视知识的综合运用和创新能力的培养。笔者曾在教学班级中做过类似的尝试,即鼓励学生将建模的思想用到课程学习中,获得了明显的效果。
大学数学建模论文范文 第9篇
关键词:数学建模 积极性 科技学院
赣南师院科技学院自2006年开始参加全国大学生数学建模竞赛以来,成绩在省内独立学院中领先。2014年的数学建模竞赛中,共12个队参赛,其中3个队以国一形式报送国家。笔者就赣南师院科技学院全国大学生数学建模竞赛参赛学生的学习情况和就业反馈进行了调研,发现参赛学生迅速掌握新知识的能力、创新性的应用知识的能力远比没参赛的学生强。国内外院校各院校参赛人数每年都在急剧增加,但赣南师院科技学院学生相比于其他本科院校学生来说,参赛的积极性明显更弱,鉴于此,本论文主要研究赣南师院科技学院学生参加全国大学生数学建模竞赛积极性不高的主要原因,以及改变此现状之策略。
1 赣南师院科技学院学生参赛积极性不高的原因
数学建模竞赛的推广范围不强
赣南师院科技学院共7个系,其中一个理科系,一个文理兼招今年刚成立的系,其他系分别是音体美,以及文科相关的系。在往年的参赛中,参赛学生都来自唯一的理科系中的数学与计算机专业的学生。
学生的实际操作较少,应用较少
我国近几十年流行的思想是学生只要听老师的话、认真看书、考试并且只要有个好成绩、成绩排名靠前,只管学习就行,其它什么都不要做都行。在这种思想的引导下,学生很少做除了学习之外的事情,更少接触到把学到的知识运用到生活中去解决问题。在读大学之前大部分学生都没参加实践过,即使在读大学之后,不到学校外面参加社会实践的人也不在少数。在这种情况下,学生接触知识面单一,思维得不到训练,当参加数学建模竞赛面对赛题的解决实际问题,面对赛题的内容知识结构多样性,涉及很多方面时,就会产生严重的挫败感,这样形成一个恶性循环,致使严重削弱学生参加数学建模竞赛的积极性。
学生的合作探究能力较弱,团队精神不强
现阶段的独立学院的学生很大部分是独生子女,是在家里长辈的百般呵护下,成长起来的孩子,大部分眼里只有自己没有他人,遇事多只考虑自己不考虑他人,虽然数学建模竞赛是一种竞争,但这并不是一种单打独斗式的竞争,而是以3人团队的形式参赛虽然队员之间有比较明确的分工,但他们之间还必须要有高度的合作探究和有效的沟通,发挥团队的作用,如果合作探究能力较弱、团队精神不强,那么思维就会受到局限、创新能力就较弱,就得不到很好的培养,拿不到好的成绩,致使严重削弱学生参加数学建模竞赛的积极性。
学校竞赛的激励机制不太合理,经费提供较少
数学建模竞赛相对于其他竞赛,获奖难度更大,获奖面更小,但是目前赣南师院科技学院的奖金制度中,数学建模竞赛获奖者所获奖金远比难易程度小得多的电脑知识赛更低,甚至还不如校有奖学金高。自从2011年学生参赛奖金制度改革以来,数学建模竞赛经常面临基本上是大一学生参赛的状况。
学生的吃苦耐劳精神不强
数学建模竞赛的赛期一般为三天三夜,在比赛期间经常会面临熬夜。而在赛前的暑假里,赣南师院科技学院会组织专业的老师给学生进行为期三十至四十天的强化培训,暑假天气炎热,教学环境一般,致使学生参赛一次后就不再参赛。
2 学生参赛积极性不高的应对策略
做好组织宣传工作,提高师生对数学建模竞赛的认识
法务时刻来源链接:https://www.jiwenlaw.com