阿白律师网,免费给小白普及法律知识。

分站导航

热点关注

阿白律师网在线咨询

在线咨询

8:00-22:00

当前位置:

阿白律师网

>

律所资讯

>

法律常识

数学建模入门论文范文(共8篇)(数学建模论文初中范文)

来源:阿白律师网   时间:2024-09-20

数学建模入门论文范文 第1篇

1.培育建模意识

当前的小学数学教材中,大部分内容编排的思路都是以建模为基础,其内容的开展模式主要是^v^生活情景到抽象模型,然后到模型验证,最后到模型的运用和解释^v^.培养建模思维的关键是对教材的解读是否从建模出发,使教材中的建模思想得到充分的开发。然后对教材中比较现实的问题进行充分的挖掘,将数学化后的实际问题创建模型,最后解决问题。教师要提高学生对建模的.意识与兴趣就要充分挖掘教材,指导学生去亲身体会、思考沟通、动手操作、解决问题。其次,通过引入贴近现实生活、生产的探索性例题,使学生了解数学是怎样应用于解决这些实际问题的。同时,让学生在利用数学建模解决实际问题的过程中理解数学的应用价值和社会功能,不断增强数学建模的意识。

2.体验建模过程

在数学的建模过程中,要将生活中含有数学知识与规律的实际问题抽象化,从而建成数学模型。然后利用数学规律对问题进行推理,解答出数学的结果后再进行证明和解释,从而使实际问题得到合理的解决。我们以解决问题的方法为例,使学生能够解决题目不是教学的唯一目的,使学生通过对数学问题的研究和体验来提升自己^v^创建^v^新模型的能力。使学生在不断的提出与解决问题的过程中培养成自主寻找数学模型和数学观念的习惯。如此一来,当学生遇到陌生的问题情境,甚至是与数学无关的实际问题时,都能够具备^v^模型^v^思想,处理问题的过程能具备数学家的^v^模型化^v^特点,从而使^v^模型思想^v^影响其生活的各个方面。

3.在数学建模中促进自主性建构

要使^v^知识^v^与^v^应用^v^得到良好的结合就必须提高学生积极构建数学模型的能力。我们要将数学教学的重点放在对学生观察、整合、提炼^v^现实问题^v^的能力培养上来。教学过程中,通过对日常问题的适当修改,使学生的实际生活与数学相结合,从而提升学生发现和提出问题,并通过创建模型解决问题的能力,为学生提供能够自主创建模型的条件。

我们以《比较》这课程内容为例,我们通过^v^建模^v^这一教学方法,培养学生对^v^>^v^^v^^v^^v^

数学建模入门论文范文 第2篇

层次分析法是美国学者于20世纪70年代提出了以定性与定量相结合,系统化、层次化分析解决问题的方法,简称AHP。传统的层次分析法算法具有构造判断矩阵不容易、计算繁多重复且易出错、一致性调整比较麻烦等缺点。本文利用微软的Excel电子表格的强大的函数运算功能,设置了简明易懂的计算表格和步骤,使得判断矩阵的构造、层次单排序和层次总排序的计算以及一致性检验和检验之后对判断矩阵的调整变得十分简单。

数学建模入门论文范文 第3篇

摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。

关键词:创新能力;数学建模;研究性学习。

《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:

(1)学会提出问题和明确探究方向;

(2)体验数学活动的过程;

(3)培养创新精神和应用能力。

其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。

数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。

一、要重视各章前问题的教学,使学生明白建立数学模型的实际意义。

教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。

如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?

这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。

这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。

二、通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。

学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:

现实原型问题

数学模型

数学抽象

简化原则

演算推理

现实原型问题的解

数学模型的解

反映性原则

返回解释

列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。

三、结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。

高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。

分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:

(1)该国的政治、经济、社会环境稳定;

(2)该国的人口增长数由人口的生育,死亡引起;

(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。

通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。

四、培养学生的其他能力,完善数学建模思想。

由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:

(1)理解实际问题的能力;

(2)洞察能力,即关于抓住系统要点的能力;

(3)抽象分析问题的能力;

(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;

(5)运用数学知识的能力;

(6)通过实际加以检验的能力。

只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。

例2:解方程组

x+y+z=1

(1)x2+y2+z2=1/3

(2)x3+y3+z3=1/9

(3)分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。

方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z恰好是其三个根

t3-t2+1/3t-1/27=0

(4)函数模型:

由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)。

平面解析模型

方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。

总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。

数学建模入门论文范文 第4篇

提高学生的主体意识是新课程改革的基本要求。在课堂教学中真正落实学生的主体地位,让学生真正成为数学课堂的主人,促进学生自主地发展,是现代数学课堂的重要标志,是高中数学素质教育的核心思想,也是全面实施素质教育的关键。高中数学建模活动旨在培养学生的探究能力和独立解决问题的能力,学生是建模的主体,学生在进行建模活动过程中表现出的主体性表现为自主完成建模任务和在建模活动中的互相协作性。中学生具有好奇、好问、好动、好胜、好玩的心理特点,思维开始从经验型走向理论型,出现了思维的独立性和批判性,表现为喜欢独立思考、寻根究底和质疑争辩。因此,教师在课堂上应该让学生充分进行自主体验,在数学建模的实践中运用这些数学知识,感受和体验数学的应用价值。

教师可作适当的点拨指导,但要重视学生的参与过程和主体意识,不能越俎代庖,目的是提高学生进行探究性学习的能力、提高学生学习数学的兴趣。

数学建模入门论文范文 第5篇

由于参加数学建模竞赛可以激起学生学习数学的兴趣,提高学生运用数学和计算机技术解决问题的综合能力,激励学生积极参加课外科技活动,开拓学生的知识视野,培养学生的创新意识和团队合作意识,推动高等数学教学体系,教学内容和教学方法的改革。基于此,给出一些建议如下:

1.把数学建模的管理层次上升到学院,因为只有学院的大力支持,领导的高度重视才是提高高职学生数学建模能力的首要条件,而且只有学院的倡导和支持,各部门在宣传数学建模方面时才会更加尽职尽责,不会出现推诿的现象。

2.成立数学建模协会小组,并有学校资金的支持,这样可以把对数学建模有兴趣的同学集中在一起,让他们之间相互讨论。建模协会应该有协会会长及其他管理者,这样他们在运营平时的协会工作时才能各司其职,并有一定的组织性和纪律性。协会平时可以组织一些经典的数学建模的小案例以海报的形式展现在全校学生面前,或者是以有奖竞猜的方法提高学生的参与性,这样不仅可以达到宣传数学建模的效果,也可以更好的提高学生的理性思维能力。

3.平时开设数学建模选修课,假期集中培训备战国赛,由于我校的数学建模课一般开设在大一的下学期,而技能大赛的比赛时间通常是选修课开课之前,这就导致了学生参加技能大赛时根本不知道数学建模比赛比的是什么。而且选修课只有一个老师教,力度太小。应该是大一开学就开始开设相关的数学建模选修课,几个数学老师分工,每个数学老师讲授一块内容,这样学生了解的知识面会更广一些。另外,必须赛前集中培训,因为平时的选修课只是让学生了解,但并没有让他们系统的练习,所以赛前培训就是重点讲数学建模习题,并让学生以三人一个小组模拟训练。

5.建设一支指导数学建模竞赛的师资队伍。实际上,一个人的知识和视野毕竟是有限的,数学建模的指导教师不但需要有扎实的数学理论基础,还需要有一定的软件编程能力和较强的解决实际问题的能力,俗话说的好“团结就是力量”,因此,必须有一个指导数学建模竞赛的队伍,教师之间必须有很好的沟通,在合作中互帮互助,共同进步,从而促进学院数学建模活动的顺利开展

6.学院每年选派数学建模指导老师去参加各类数学建模教师培训班,组织他们去本市数学建模竞赛组织好的兄弟院校去参观学习,交流宝贵的建模经验。同时,学校出台一系列奖励政策,在各类大型竞赛中,学院应给获奖的学生一定的物质奖励,并在期末考评,评奖等方面给予优先考虑。

关键词:数学建模;图论;实践

一、引言

由于图论课程具有概念多、公式复杂和定理难证明、难理解等特点,在一定程度上造成教学难,证明抽象度高,学生难以理解,学生不能真正理解图论思想,更谈不上灵活运用图论知识来解决各种实际问题。从而会使学生感到图论的学习非常枯燥。大学数学课程教学改革的趋势,越来越注重数学的应用性,而数学建模过程就是利用已经掌握的数学知识来解决实际问题的过程。在当前实现数学作为一种应用能力的过程中,使用数学解决实际问题的能力培养是非常重要和必需的。因此,在大学数学类课程的教学中融入数学建模思想是目前数学课程教学改革的一个大的趋势。由于图论的概念和定理大多是从实际问题中抽象出来的,因此图论中的诸多模型和算法是数学建模强有力的理论依据。所以在图论课程教学中注重介绍这些概念和理论的实际背景,引导学生利用数学建模思想方法学习图论的相关概念和定理,探究图论的发展规律,从而将更好地帮助学生理解和掌握这些概念和理论。

二、数学建模思想方法

数学模型就是用数学语言,通过抽象、简化,建立起来的描述客观事物的特征及其内在联系的数学结构。这个结构可以是公式、方程、表格、图形等。把现实模型抽象、简化为某种数学结构(即数学模型)之后,我们就可以用相关的数学知识来求出这个模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题,这个过程便称为数学建模。其目的是将复杂的客观事物或联系简单化并用数学手段对其进行分析和处理。建立数学模型解决现实问题要经过模型准备、模型假设、模型构成、模型求解和模型分析这五个步骤。模型准备就是了解问题的实际背景,明确建模目的,搜集必要的各种信息,尽量弄清对象的特征,形成一个比较明晰的“问题”。模型假设是根据对象的特征和建模目的,抓住问题的本质,做出必要的、合理的简化假设。模型构成是根据所作的假设,用数学的语言、符号描述对象的内在规律,建立包含常量、变量等的数学模型。模型求解是采用解方程、画图形、优化方法、数值计算、统计分析等各种数学方法,特别是数学软件和计算机技术求解。模型分析就是对求解结果进行数学上的分析,并解释为对现实问题的解答。由此可见,思想数学建模就是将数学的理论知识应用于解决实际问题,培养数学建模思想就是锻炼应用数学的能力。

在图论的教学中引入数学建模思想,将生活中的实际问题引入课堂,利用图论知识分析实际问题,让学生感受到图论贴近生活。教学中可以引导学生自己寻找与图论相关的实际问题,利用图论知识建立实际问题的数学模型,并进行报告和讨论,让学生发表自己的见解和看法,在此过程中有助于学生对所学知识的融会贯通和掌握,大大提高学生学习图论的兴趣。

三、数学建模思想方法融入图论教学的实践

目前,各门数学课程教学改革所面临的一个课题是如何增强应用数学知识解决实际问题的意识。在这样的背景下,加之图论知识的应用广泛性,从而,将数学建模的思想方法融入到图论课程教学中的研究和实践已显得刻不容缓。因此,结合图论教学内容有机地增加数学建模教学内容,使广大的学生能学习和体会到数学建模的基本思想方法,在日常的学习中培养学生应用图论知识的意识,激发了学生学习图论的积极性。

(一)在图论定理公式中渗入建模的案例

在图论某些定理证明的教学过程中可以适当地融入数学建模的思想与方法,把定理的结论看作一个特定的模型,需要去建立它。于是,当把定理的条件看作是模型的假设时,可根据预先设置的问题,情景引导学生发现定理的结论,从而定理证明的方法也随之显现。

案例1:设为任意无向图,V={v1,v2,…,vn},|E|=m,证明所有顶点的度数和=2m,并且奇点个数为偶数。

解析:证明该结论之前,首先任意选取若干个学生让其随机互相握手,并记下每个人的握手次数和每两人之间握手的次数,由此可得每个人握手次数总和是每两人之间握手次数的2倍以及握过奇数次手的人数一定是偶数。互动之后介绍该定理称之为握手定理,从互动过程中可以建立定理结论的模型,并且证明的思路也是显而易见的。

(二)在应用性例题中渗入数学建模的方法

案例2:一家公司生产有c1,c2,c3,c4,c5,c6,c7七种化学制剂,其中制剂(c1,c2),(c1,c4),(c2,c3),(c2,c5),(c2,c7),(c3,c4),(c3,c5),(c3,c6),(c4,c5),(c4,c7),(c5,c6),(c6,c7)之间是互不相容的,如果放在一起能发生化学反应,引起危险。因此,作为一种预防措施,该公司必须把仓库分成互相隔离的若干区,以便把不相容的制品储藏在不同的区,问至少要划分多少小区,怎样存放才能保证安全。

解析:首先建立模型,用图来表示实例中这些制剂和他们之间关系,用顶点v1,v2,v3,v4,v5,v6,v7,表示c1,c2,c3,c4,c5,c6,c7表示七种化学制品,把不能放在一起的两种制品对应的顶点用一条边连接起来,如图1。

模型求解:由图可得极小覆盖的逻辑表达式为:

(v1+v2v4)(v2+v1v3v5v7)(v3+v2v4v5v6)(v4+v1v3v5v7)(v5+v23v4v6)(v6+v3v5v7)(v7+v2v4v6)

利用逻辑代数法则简化上述逻辑表达式为:

v1v3v5v7+v2v3v4v5v6+v2v4v5v6+v2v3v4v6

从而可得全部极小覆盖为:

(v1,v3,v5,v7),(v2,v3,v4,v5,v7),(v2,v4,v5,v6),(v2,v3,v4,v6)

由于极大独立集与极小覆盖集之间互补的关系,所以上图的所有极大独立集为(v2,v4,v6),(v1,v6),(v1,v3,v7),(v1,v5,v7).取图G的一个极大独立集V1=(v2,v4,v6),将其着第一种颜色。在VG-V1中,所有极大独立集为,(v1,v3,v7),(v1,v5,v7),取V2=(v1,v3,v7)将其着第二种颜色。在VG-V1-V2中仅有点v5,将其着第三种颜色,故χ(G)=3.

于是得到该化学制品的存放方案:至少需要把仓库划分为3个区,可以将c2,c4,c6三种制品,c1,c3,c7三种制品和制品c5分别存放在一个区。

(三)设计相关数学建模问题,提高学生应用图论知识解决实际问题的能力

由于教学课时的限制,将数学建模的思想方法融入图论课程教学时,不能专门地让学生学习建模,只能通过一些简单的模型给学生介绍数学建模的思想及方法。图论是现代数学的一个重要分支,在自然科学、社会科学、机械工程中有重要的意义,其求解思想渗透到自然学科的各个领域。因此,可以通过设计一些与图论课程相关的课外建模活动,选择符合学生实际并贴近生活的一些图论问题,启迪学生的论文查阅意识和能力,指导学生阅读相关论文,最后以解题报告或小论文的形式提交他们的结果。促进学生应用图论知识解决实际问题的能力。

四、结语

将数学建模思想方法融入图论课程的教学中,使图论课程教学与数学建模有机结合起来,激发学生学习图论的兴趣,培养学生勇于探索的精神,提高学生的动手能力,实践表明这些方法能较好地提高图论课程的教学效果。

参考文献:

[1]Bondy J A,Murty U S theory with applications[M].North-Holland:Elsevier,1976.

[2]翟明清.浅析图论教学[J].大学数学,2011,27(5):23-26.

[3]定向峰.将数学建模的思想和方法融入图论课程教学中的一点尝试[J].重庆教育学院学报,2006,19(6):28-31.

[4]张清华,陈六新,李永红.图论教育教学改革与实践[J].电脑知识与技术,2012,8(34):8235-8237.

[5]姜启源,谢金星,叶俊.数学模型[M].第4版.北京:高等教育出版社,2011.

数学建模入门论文范文 第6篇

研究人员对机器人动力学有着极大的兴趣。当导出机器人动力学方程的解析形式时可以用拉格朗日或者阿佩尔形式进行描述。在正式说明的情况下,拉格朗日需要对动能和广义力推导出解析表达式,在使用形式化描述阿佩尔的情况下―能量,加速度,和转化的广义力。确定必要的动能,在一般情况下,为了确定质量速度的构成系统和固体角速度矢量实心体的中心刚体的动能在绝对坐标系的变换下是不发生改变的。

这使我们能够获得惯性张量的变换公式之交

一旦将每个环节的动能进行描述解析,找到整个系统的总动能很重要:

找到的每一个链接的动能:

各链接的转动惯量:

让我们假设

经过变换和替换得到

获取拉格朗日方程的每一个环节。区分系统的总动能交替关于。

该操作的结果是,我们得到了各链接下面的等式:

链接1:

链接2:

(1)

结合系统得出方程:

(2)

柯西变换结果系统的一般形式,替代:

(3)

数学建模入门论文范文 第7篇

摘要:层次分析法是美国学者于20世纪70年代提出了以定性与定量相结合,系统化、层次化分析解决问题的方法,简称AHP。传统的层次分析法算法具有构造判断矩阵不容易、计算繁多重复且易出错、一致性调整比较麻烦等缺点。本文利用微软的Excel电子表格的强大的函数运算功能,设置了简明易懂的计算表格和步骤,使得判断矩阵的构造、层次单排序和层次总排序的计算以及一致性检验和检验之后对判断矩阵的调整变得十分简单。

关键词:Excel 层次分析法 模型

一、层次分析法的基本原理

层次分析法是解决定性事件定量化或定性与定量相结合问题的有力决策分析方法。它主要是将人们的思维过程层次化、,逐层比较其间的相关因素并逐层检验比较结果是否合理,从而为分析决策提供较具说服力的定量依据。层次分析法不仅可用于确定评价指标体系的权重,而且还可用于直接评价决策问题,对研究对象排序,实施评价排序的评价内容。

用AHP分析问题大体要经过以下七个步骤:

⑴建立层次结构模型;

首先要将所包含的因素分组,每一组作为一个层次,按照最高层、若干有关的中间层和最低层的形式排列起来。对于决策问题,通常可以将其划分成层次结构模型,如图1所示。

其中,最高层:表示解决问题的目的,即应用AHP所要达到的目标。

中间层:它表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等。

最低层:表示解决问题的措施或政策(即方案)。

⑵构造判断矩阵;

设有某层有n个元素,X={Xx1,x2,x3……xn}要比较它们对上一层某一准则(或目标)的影响程度,确定在该层中相对于某一准则所占的比重。(即把n个因素对上层某一目标的影响程度排序。上述比较是两两因素之间进行的比较,比较时取1~9尺度。

用 表示第i个因素相对于第j个因素的比较结果,则

A则称为成对比较矩阵

比较尺度:(1~9尺度的含义)

如果数值为2,4,6,8表示第i个因素相对于第j个因素的影响介于上述两个相邻等级之间。

倒数:若j因素和i因素比较,得到的判断值为

⑶用和积法或方根法等求得特征向量 W(向量 W 的分量 Wi 即为层次单排序)并计算最大特征根λmax;

⑷计算一致性指标 CI、RI、CR 并判断是否具有满意的一致性。其中RI是

平均随机一致性指标 RI 的数值:

矩阵阶数 3 4 5 6 7 8 9 10 11

RI

CR=CI/RI,一般地当一致性比率CR<时,认为A的不一致程度在容许范围之内,可用其归一化特征向量作为权向量,否则要重新构造成对比较矩阵,对A加以调整。

⑸层次总排序,如表1所示。

⑹层次总排序一致性检验,如前所述。

⑺根据需要进行调整 对于层次单排序结果和层次总排序结果,只要符合满意一致性即随机一致性比例 CR≤ 就可以结束计算并认同排序结果,否则就要返回调整不符合一致性的判断矩阵。

二、层次分析法 Excel 模型设计过程 案例:某人欲到苏州、杭州、桂林三地旅游,选择要考虑的因素包括四个方面:景色、费用、居住和饮食,用层次分析法选一个适合自己情况的旅游点。

⒈根据题意可以建立层次结构模型如图1所示。

⒉Excel实现过程 ⑴将准则层的各因素对目标层的影响两两比较结果输入Excel表格中,进行单排序及一致性检验如图2所示。 其中:F4=PRODUCT(B4:E4),表示B4、C4、D4、E4各单元格连乘,复制公式至F7单元格。 G4=POWER(F4,1/4),表示将F4单元格的值开4次方,复制公式至G7单元格 G8=SUM(G4:G7),表示求和 H4=G4/$G$8,复制公式至H7单元格 I4= B4*H$4+C4*H$5+D4*H$6+E4*H$7,复制公式至I7单元格 J4= I4/H4 λmax= AVERAGE(J4:J7)。 CI=(J8-4)/(4-1),CR=CI/;,即通过一致性检验。

⑵按同样的方法分别计算出方案层对景色、费用、居住、饮食的判断矩阵及一致性检验,如图3所示。 ⑶层次总排序,由于苏州数值最高,故选择的旅游地为苏州,如图4所示。 其中:C44=K14,G44=$C$43*C44,H48={SUM($C$43:$F$43*C48:F48)},注意:这是一个数组函数需按ctrl+shift+enter三键确定。

三、基于Excel的层次分析法模型设计的优势

⑴层次分析法 Excel 算法以广泛使用的办公软件 Excel 作为运算平台,无需掌握深奥的计算机专业知识和术语,有很好的推广应用基础。

⑵层次分析法 Excel算法的所有计算结果和数据均保留最高位数的精确度,可以不在任何环节进行四舍五入,当然也可以根据需要设置小数位,从而最大限度地减少了误差。

⑶层次分析法 Excel 算法的计算步骤设计成环环相扣、步步跟踪,步骤设计完毕后,可以按需要填充或变更,其余数据和结果均可以在填充或变更判断矩阵之后立即得出,使得整个运算过程简捷、轻松。另外,相似的矩阵区和计算区可以通过复制完成,只需改动少量单元格。

⑷层次分析法 Excel 算法将一致性检验也同时计算出来,决策者和判断者可以即时知道自己的判断是否具有满意的一致性并可以随时和简单地进行调整直到符合满意一致性。

⑸如果一致性指标不能令人满意,用本方法可以比较容易地实现对判断矩阵的调整,可以实现对判断的“微调” ,使得逼近最大程度的“满意一致性”甚至“完全一致性”而又不必进行繁重运算成为可能。

数学建模入门论文范文 第8篇

数学建模与数学模型

数学建模一词出现的时间并不是很长,大概可以追溯到30年前,它的出现是基于科学技术的进步,尤其近半个世纪以来,随着计算机技术的进步和发展,数学建模便应运而生,并得到迅速的发展,直到现在已经大致形成了体系,在我国,数学建模比赛也有20多年的时间了,建模参考书籍越来越多,内容越来越完备,不同的书籍对数学建模的定义虽然有所不同,但大致可以归纳位:对实际问题进行分析,做出简化假设,分析其内在规律,并运用数学符号和数学语言将规律描述出来,再用适当的数学工具,得到一个数学结构,该结构称为数学模型,建立数学模型的过程叫做数学建模。

应用数学去解决实际问题时,建立数学模型是至关重要的一步,也是比较困难的一步,建立数学模型的过程,就是把一个实际问题进行合理的简化,并对相关信息进行调查、收集、整理,分析出问题的内在规律,并用数学符号将这种隐含的规律表达出来,然后运用恰当的数学方法对其进行分析、计算,最终解决问题,这一步对建模者的数学基础要求比较高,要求建模者有较为完善的数学体系,并且还要有敏锐的想象力和洞察力,数学建模的作用越来越受到数学工程界的普遍认可,它以成为现代科技者的必备技能之一。

数学建模的一般步骤

下面结合数学建模的几个环节和数学建模实例,简要介绍MATLAB在数学建模中的一般步骤,模型准备:在建模前要了解问题的实际背景,搜索问题信息,明确求解目的,从而确定用何种数学方法和建立何种数学模型;模型假设:根据实际对象的特征和建模的目的,抓住问题的主要因素,对问题进行合理简化,用精确的语言提出恰当的假设;模型建立:在假设的基础上,利用合理的数学工具刻画各变量、常量之间的数学关系,建立相应的数学结构;④模型求解:利用获取的数据和已有的数学方法,来求解上一步的数学问题,对模型的参数进行相应计算⑤模型分析:对所建立的模型的思路进行阐述,对所得的结果进行数学上的分析;⑥模型检验:将模型与实际情况进行比较,以此来检验模型的准确性、合理性,如果不符合实际情况需重新建立模型;⑦模型的推广:在现有的模型基础上,对模型进行更加全面的考虑,使模型更能反映实际情况。

标签:      

法律求助咨询
本站覆盖全国各省市律师事务所咨询,如果您有法律上的疑问,需要解答;或者您有法律上的求助,欢迎联系我们,我们在收到您的信息之后,安排您指定的律师事务所或者当地最近的律师事务所和您联系,协助您处理法律上的问题!
*

姓名

*

手机号码

*

户籍地址

  *

您的疑问

立即提交 《隐私保障》

分享:

qq好友分享 QQ空间分享 新浪微博分享 微信分享 更多分享方式
(c)2024 www.szjesus.com All Rights Reserved SiteMap 联系我们 | 浙ICP备2022036554号